Copper-Induced Strengthening in 0.2 C Bainite Steel

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of Bainite Transformation in Fe-Cr-Mo-V-Ti-C Steel

The kinetics and mechanism of bainite transformation have been studied in Fe-Cr-Mo-V-Ti-C steel high speed dilatometry backed by thermodynamic analysis. The complete transformation of austenite, however, has not occurred at any reported temperature. Obtained results confirm the incomplete reaction phenomenon with the cessation of the bainite transformation well before the paraequilibrium is ach...

متن کامل

Comments on “Bainite formation kinetics in high carbon alloyed steel”

We examine here the physical aspects and input parameters of a recently published model on the overall transformation kinetics of the bainite reaction in steels.

متن کامل

High-Cycle, Push–Pull Fatigue Fracture Behavior of High-C, Si–Al-Rich Nanostructured Bainite Steel

The high-cycle, push-pull fatigue fracture behavior of high-C, Si-Al-rich nanostructured bainitic steel was studied through the measurement of fatigue limits, a morphology examination and phase composition analysis of the fatigue fracture surface, as well as fractography of the fatigue crack propagation. The results demonstrated that the push-pull fatigue limits at 10⁷ cycles were estimated as ...

متن کامل

Influence of Tempering on the Microstructure & Properties of Martensite and Bainite developed in a Low-C High-Si Steel

Martensitic and bainitic steels are two types of widely used steels with excellent mechanical behaviors in automatic industry. It’s universally acknowledged that asquenched martensite possesses poor ductility and impact toughness, which should be tempered before putting into application. During tempering, as-quenched martensite changes from a hard and brittle microstructure to more ductile and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials

سال: 2021

ISSN: 1996-1944

DOI: 10.3390/ma14081962